Master Equation Approach to the Dynamics of Open Time-Varying Quantum Systems

<u>M. Scala</u>, B.D. Militello and A. Messina MIUR and Dipartimento di Scienze Fisiche ed Astronomiche, Università di Palermo (Italy)

Summary

• Adiabatic Approximation and Berry Phase

• Environment

• Derivation of the Master Equation

• A Simple Illustrative Application

Adiabatic Approximation

•Time-dependent hamiltonian

H(t)

•Instantaneous eigenstates

 $\left\{ \left| n(t) \right\rangle \right\}$

•Evolution (non-degenerate spectrum):

 $|n(t=0)\rangle \rightarrow e^{i\phi(t)}|n(t)\rangle$

Berry Phase

• Cyclic Evolution H(T) = H(0)

$$|n(0)\rangle \rightarrow e^{i(\phi_D(T)+\phi_G(T))}|n(0)\rangle$$

• Dynamical Phase

 $\phi_D(T) = -\int_{0}^{T} E_n(t) dt$

• Berry Phase $\phi_G(T) = i \int_0^T \left\langle n\left(\vec{R}(t)\right) \middle| \nabla_R n\left(\vec{R}(t)\right) \right\rangle \cdot \frac{d\vec{R}}{dt} dt$

Decoherence

• Fluctuations in the classical parameters

• The system is not isolated

$$H = H_S + H_{env} + H_{int}$$

System-Environment Coupling

Interaction hamiltonian

(A and B hermitian)

$$H_{int} = A \otimes B$$

Expansion of A (constant eigenvalues of $H_s(t)$):

$$A(\omega, t) = \sum_{n, m: \epsilon_m - \epsilon_n = \omega} |\epsilon_n(t)\rangle \langle \epsilon_n(t) | A | \epsilon_m(t) \rangle \langle \epsilon_m(t) |$$

Properties:

$$A(-\omega,t) = A(\omega,t)^{\dagger}$$

 $A = \sum_{\omega} A(\omega, t)$

Interaction Picture

$$H_0 = H_S(t) + H_{env}$$

$$A^{I}(\omega,t) = e^{-i\omega t} \sum_{n,m:\ \epsilon_{m}-\epsilon_{n}=\omega} e^{i[\phi_{G}^{m}(t)-\phi_{G}^{n}(t)]} |\epsilon_{n}(0)\rangle \langle\epsilon_{n}(t)|A|\epsilon_{m}(t)\rangle \langle\epsilon_{m}(0)|$$

Evolution of the system density matrix (Born-Markov approximation)

$$\dot{\rho}(t) = -\int_0^\infty d\tau \, Tr_B \, \{ [H_I(t), [H_I(t-\tau), \, \rho(t) \otimes \rho_B]] \}$$

Master Equation (I)

Our Main Hypothesis:
$$A^{I}(\omega, t - \tau) \simeq e^{-i\omega(t-\tau)} \tilde{A}(\omega, t)$$

$$\tilde{A}(\omega,t) = \sum_{n,m:\ \epsilon_m - \epsilon_n = \omega} e^{i[\phi_G^m(t) - \phi_G^n(t)]} |\epsilon_n(0)\rangle \langle \epsilon_n(t) | A | \epsilon_m(t) \rangle \langle \epsilon_m(0) \rangle \langle \epsilon_m(0) \rangle \langle \epsilon_m(t) | A | \epsilon_m(t) \rangle \langle \epsilon_m(0) \rangle \langle \epsilon_m(0) \rangle \langle \epsilon_m(0) \rangle \langle \epsilon_m(t) | A | \epsilon_m(t) \rangle \langle \epsilon_m(0) \rangle \langle \epsilon_m(0) \rangle \langle \epsilon_m(t) | A | \epsilon_m(t) \rangle \langle \epsilon_m(0) \rangle \langle \epsilon_m(0) \rangle \langle \epsilon_m(t) | A | \epsilon_m(t) \rangle \langle \epsilon_m(0) \rangle \langle \epsilon_m(t) | A | \epsilon_m(t) \rangle \langle \epsilon_m(0) \rangle \langle \epsilon_m(t) | A | \epsilon_m(t) \rangle \langle \epsilon_m(0) \rangle \langle \epsilon_m(t) | A | \epsilon_m(t) \rangle \langle \epsilon_m(0) \rangle \langle \epsilon_m(t) | A | \epsilon_m(t) \rangle \langle \epsilon_m$$

$$\dot{\rho}(t) = \sum_{\omega,\omega'} e^{i(\omega'-\omega)t} \Gamma(\omega) \left(\tilde{A}(\omega,t)\rho(t)\tilde{A}(\omega',t)^{\dagger} - \tilde{A}(\omega',t)^{\dagger}\tilde{A}(\omega,t)\rho(t) \right) + h. \ dt$$

$$\Gamma(\omega) = \int_0^\infty d\tau \, \mathrm{e}^{i\omega\tau} \left\langle B(t)B(t-\tau) \right\rangle_B = \int_0^\infty d\tau \, \mathrm{e}^{i\omega\tau} \left\langle B(\tau)B(0) \right\rangle_B$$

Rotating Wave Approximation (RWA)

Master Equation (II)

In Schroedinger Picture:

$$\dot{\rho}_S(t) = -i \left[H_S(t) + H_{LS}^S, \rho_S(t) \right] + \mathcal{D}_S \left(\rho_S(t) \right)$$

where

$$\begin{aligned} H_{LS}^{S} &= \sum_{\omega} S(\omega) \tilde{A}_{S}(\omega, t)^{\dagger} \tilde{A}_{S}(\omega, t) \\ \mathcal{D}_{S}(\rho) &= \sum_{\omega} \gamma(\omega) \left(\tilde{A}_{S}(\omega, t) \rho \tilde{A}_{S}(\omega, t)^{\dagger} - \frac{1}{2} \left[\tilde{A}_{S}(\omega, t)^{\dagger} \tilde{A}_{S}(\omega, t), \rho \right]_{+} \right) \\ \tilde{A}_{S}(\omega, t) &= \sum_{n,m: \epsilon_{m} - \epsilon_{n} = \omega} \left| \epsilon_{n}(t) \right\rangle \left\langle \epsilon_{n}(t) \right| A \left| \epsilon_{m}(t) \right\rangle \left\langle \epsilon_{m}(t) \right| \end{aligned}$$

and

$$\left\{ \begin{array}{l} \gamma(\omega) = \Gamma(\omega) + \Gamma(\omega)^* \\ \\ S(\omega) = \frac{1}{2i} \left(\Gamma(\omega) - \Gamma(\omega)^* \right) \end{array} \right.$$

Prescriptions

1. Write down the Master Equation in the case of Hs independent of time

2. Insert the time dependence of the parameters directly into the stationary ME

Corrections to the Master Equation

$$\begin{split} \dot{\rho}(t) &= \sum_{\omega} \Gamma(\omega) \left(\tilde{A}(\omega, t) \rho(t) \tilde{A}(\omega, t)^{\dagger} - \tilde{A}(\omega, t)^{\dagger} \tilde{A}(\omega, t) \rho(t) \right) + h. c. + \\ &+ \sum_{\omega} \Gamma'(\omega) \left(\tilde{\tilde{A}}(\omega, t) \rho(t) \tilde{A}(\omega, t)^{\dagger} - \tilde{A}(\omega, t)^{\dagger} \tilde{\tilde{A}}(\omega, t) \rho(t) \right) + h. c. \end{split}$$

where

$$\tilde{\tilde{A}}(\omega,t) = \sum_{n,m:\,\epsilon_m - \epsilon_n = \omega} \,\mathrm{e}^{i[\phi_G^m(t) - \phi_G^n(t)]} \left|\epsilon_n(0)\right\rangle \left\langle\epsilon_n(t)\right| \left[\frac{\partial H(t)}{\partial t}, A\right] \left|\epsilon_m(t)\right\rangle \left\langle\epsilon_m(0)\right|$$

$$\Gamma'(\omega) = \int_0^\infty d\tau \, \tau^2 \, \mathrm{e}^{i\omega\tau} \, \langle B(\tau) B(0) \rangle_B$$

Adiabatic Evolution

$$\dot{\rho}(t) = \mathcal{L}(t)\rho(t)$$
 Lindblad-type Master Equation

- Recent criterion: (Sarandy and Lidar, PRA **71**, 012331 (2005))
- Evolution of the Eigenoperators (1-dimensional Jordan blocks):

$$\rho_i(0) \to \mathrm{e}^{\gamma_i(t)} \rho_i(t)$$

Phase factors

$$e^{i\gamma_i(t)} = \exp\left\{\int_0^t \left[\lambda_i(t') - f_i\left(\dot{\rho}_i(t')\right)\right] dt'\right\}$$

where

$$\mathcal{L}(t)\rho_i(t) = \lambda_i(t)\rho_i(t) \quad , \quad f_i(t)\mathcal{L}(t) = \lambda_i(t)f_i(t)$$

and

$$f_j(\rho_i) = (\tilde{\rho}_j, \rho_i) = Tr\{\tilde{\rho}_j\rho_i\} = \delta_{ij}$$

Example: spin
$$\frac{1}{2}$$

 $H = H_S + H_{env} + H_{int}$

$$H_S(t) = \frac{1}{2}\vec{B}(t) \cdot \vec{\sigma}$$
$$H_{env} = \sum_k \omega_k a_k^{\dagger} a_k$$
$$H_{int} = \sigma_x \otimes \sum_k \left(g_k a_k + g_k^* a_k^{\dagger} \right)$$

Master Equation for the spin

Time-dependent basis $\{ |+_B(t)\rangle, |-_B(t)\rangle \}$

where

$$\begin{cases} \tilde{\gamma}(\omega_0) = \gamma(\omega_0) \cdot \left(\cos^2 \theta(t) \cos^2 \varphi(t) + \sin^2 \varphi(t)\right) \\ \tilde{\gamma}(-\omega_0) = \gamma(-\omega_0) \cdot \left(\cos^2 \theta(t) \cos^2 \varphi(t) + \sin^2 \varphi(t)\right) \\ \tilde{\gamma}(0) = \gamma(0) \cdot \left(4\cos^2 \frac{\theta(t)}{2} \sin^2 \frac{\theta(t)}{2} \cos^2 \varphi(t)\right) \end{cases}$$

Results (coherences) I

Eigenvalue

$$\lambda_{+} = -i\omega_{0} - \left(\frac{\tilde{\gamma}(\omega_{0})}{2} + \frac{\tilde{\gamma}(-\omega_{0})}{2} + 2\tilde{\gamma}(0)\right)$$

Right Eigenoperator
$$\rho_{+} = |+_{B}(t)\rangle \langle -_{B}(t)|$$

Left Eigenoperator

$$\tilde{\rho}_{+} = \left|-_{B}(t)\right\rangle \left\langle+_{B}(t)\right|$$

Adiabatic Evolution

$$\left|+_{B}(0)\right\rangle\left\langle-_{B}(0)\right| \rightarrow e^{i\left[\gamma_{+D}(t)+\gamma_{+G}(t)\right]}\left|+_{B}(t)\right\rangle\left\langle-_{B}(t)\right|$$

Results (coherences) II

$$\theta(t) = \theta_0$$
 , $\varphi(t) = \varphi(0) + \frac{2\pi}{T}t$, $\left|\vec{B}(t)\right| = B_0$

ı.

.

Dynamical Phase

$$\gamma_{+D}(t) = -i\omega_0 t - \frac{1}{2} \left\{ \frac{\gamma(\omega_0) + \gamma(-\omega_0)}{2} \left(1 + \cos^2 \theta_0 \right) + 2\gamma(0) \sin^2 \theta_0 \right\} t + \frac{1}{4} \left\{ \frac{\gamma(\omega_0) + \gamma(-\omega_0)}{2} - 2\gamma(0) \right\} \sin^2 \theta_0 \left[\sin 2\varphi(t) - \sin 2\varphi(0) \right]$$

Geometric Phase

$$\gamma_{+G}(t) = -\int_0^t \left\{ \langle +_B(t') \left| \dot{+}_B(t') \rangle - \langle -_B(t') \left| \dot{-}_B(t') \rangle \right\} dt' = \left[\phi_G^+(t) - \phi_G^-(t) \right] \right\}$$

Comparison with previous results

- Sarandy and Lidar, quant-ph/0507012. Similar results: no corrections to Berry phase.
- Whitney et al., PRL 94, 070407 (2005). Master Eq. in a rotating frame.
 Different results: corrections to Berry phase.